课程名称 (Course Name) : Stochastic Processes and Queueing Theory
课程代码 (Course Code): X034501
学分/学时 (Credits/Credit Hours):32
开课时间 (Course Term ):Autumn
开课学院(School Providing the Course): SEIEE
任课教师(Teacher): Jianhong Shi
课程讨论时数(Course Discussion Hours): 0
课程实验数(Lab Hours): 0
课程内容简介(Course Introduction):
This course will introduce the student to a basic set of mathematical tools which are appropriate for dealing with the randomness / stochasticity that underlies the operation of many technological, economic and social systems.
教学大纲(Course Teaching Outline):
Introduction
  1. Overview
     – Definition of Probability, Random Variable, Stochastic Process
     – Classification of Stochastic Processes
– Overview of Queueing Theory
Part I:Stochastic Processes Theory
  2. Conditional Probability and Conditional Expections
     -- Math Definition
     -- Applications
  3. Markov Processes and Poisson Process
     -- Definition
     -- Chapman-Kolmogorov Equations
     -- Limiting Probability
     -- Time Reversibility
     -- Markov Decision Process
     -- Kolmogorov Forward and Backward Equation
     -- Definition of Exponential Distribution
     -- Properties of Exponential Random Variable
     -- Convolutions of Exponential Random Variable
     -- Defintiation of Counting Process, Poisson
     -- Properties of Poisson Process
     -- Variations of Poisson Process (nonhomogenous, Compound, Conditional)
  4. Renew Processes, Random Walk, Brownian Motion
     -- Definition of Renewal Process
     -- Distribution of N(t)
     -- Wald's Equatioin
     -- Insights of Renewal
     -- Variations on Brownina Motion
     -- Absorbed Brownian Motion
     -- Reflected Brownian Motion
     -- Geometric Brownian Motion
     -- Integrated Brownian Motion
     -- Brownian Motion with drift
     -- Analyze Brownian Motion through Martingale
     -- Kolmogrov Differential Equations for Brownian Motion
 5. Martingale Processes, Stationary Processes
     -- Supper Martiginale, Sub Martingale
     -- Fundamental Martingale Inequalities
     -- Doob's Martingale Convergence Theorem
     -- Definition of Stationary Process
     -- Limiting Theorems and Ergodic Theory
Part II:Queueing Theory
6. M/M/1, M/M/C, etc
7. M/Er/1, Er/M/1, etc
8. M/G/1 
9. G/M/1 
10. Priority Queue
11. G/G/1 
12. Queueing Networks (Jackson Networks, Wittle Networks)
课程进度计划(Course Schedule):
1st week:Overview
2nd week:Conditional Probability and Conditional Expections
3rd Week:Poisson Process
4th Week:Markov Processes
5Th Week:Renew Processes
6th Week:Random Walk
7th Week:Brownian Motion
8th Week:Martingale Processes
9th Week:Stationary Processes
10th Week:Queueing Theory
11th Week:Review
课程考核要求(Course Assessment Requirements):
1.Class performance 20%
2.Home work 30%
3.Final project 50%
参考文献(Course References):
Introduction to Probability Models, 10th Edition", by Sheldon Ross
预修课程(Prerequisite Course)
Understanding of elementary probability